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Nucleation and growth: Decay of a metastable state
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We present a self-consistent model that describes the entire process of phase separation from the initial
nucleation to the late stage Ostwald ripening regime. The model, formulated in terms of a set of interface
equations, naturally incorporates the correlations which originate in the overlapping of the diffusional fields
corresponding to the different precipitates.@S1063-651X~97!51907-6#

PACS number~s!: 64.60.My, 64.75.1g
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A metastable state evolves towards its stable equilibr
state via the formation and growth of droplets. At prese
the early-time process of homogeneous nucleation is w
understood@1–4#. The critical energy for the formation of
droplet is determined through a competition between a v
ume term~which favors creation of the droplet!, and a sur-
face term ~which favors its dissolution!: Droplets of size
R.Rc ~critical radius! grow, while droplets withR,Rc

shrink. Ostwald ripening, the late-stage process of dro
growth by evaporation and condensation, is also well und
stood. To reduce the interfacial free energy of the syst
material diffuses away from small, high-curvature dropl
~which dissolve!, and condenses onto large, low-curvatu
droplets~which grow!. The classic theory of this process
due to Lifshitz and Slyozov@5#, who considered the nonin
teracting limit with volume fractionf→0. For nonzerof,
the main results@6,7# are that the universal scaling form o
the droplet distribution function depends onf, and that the
coarsening rateK(f) in the growth law for the mean radiu

R̄(t), R̄3(t)}K(f)t, is a monotonically increasing functio
of f.

Although these limiting cases are understood, much
is known about the complete evolution of the system fr
the early nucleation to the late Ostwald ripening stage. T
problem was first studied in the seminal work of Langer a
Schwartz@8#, who used a mean-field approach to study
nonlinear dynamical equations of a phase separating sy
with both nucleation and growth of droplets@9#. Experimen-
tal evidence@10# points to the importance of the interpartic
diffusional interactions and of the spatial locations of p
ticles on nucleation and growth, and therefore, to the n
for a comprehensive theory including such correlation
fects.

In this paper, we present a self-consistent model that c
bines steady-state homogeneous nucleation theory with
classical Lifshitz-Slyozov mechanism, modified to accou
for the substantial correlations amongst the droplets.
model, formulated in terms of a set of interface equations
numerically studied in dimensionsd52 andd53. Since our
method only integrates the interface equations, it permits
simulation of much larger systems than can be studied u
other methods, such as Langevin equation simulations.
formalism naturally incorporates the crossover from
early-stage nucleation to the late-stage scaling regime, w
561063-651X/97/56~1!/21~4!/$10.00
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out ad hocassumptions. Results from a mean-field soluti
based on a Thomas-Fermi approximation are also shown

We use dimensionless variables. Units of length and ti
are expressed in terms of the capillary leng
l c5(d21)svm /(kT) and the characteristic time
tc5 l c

2/@DCeq(`)vm#. These quantities depend on the sp
cial dimensiond, the surface tensions, the molecular vol-
ume vm , the temperatureT, the Boltzmann constantk, the
solute concentration in the matrix at a planar interfa
Ceq(`) of a phase-separated system, and the diffusion c
stantD. We also introduce a dimensionless concentrat
field u(r ,t)5@C(r ,t)2Ceq(`)#/Ceq(`), whose value far
from any droplet is the time-dependent supersatura
x(t); and the dimensionless parameter @8#
x0
d215vs l c

d21/(kT) where v5pd/2/G(d/211). In dimen-
sionless form, the field-theoretic steady-state nucleation
can be written as@2,8,11#

Jd5Ad@x~ t !/x0#
adbdexp$2@x0 /x~ t !#d21% ~1!

where Ad is a numerical constant,a352/3, a254,
b35@11x(t)/x0#

3.55, and b251. The critical radius is
given byRc51/x(t). The nucleation rate gives the numb
of droplets nucleated per unit volume per unit time for
given supersaturation.

The time evolution of the system is described by the m
tidroplet diffusion equation for the concentration fie
u(r ,t). In the monopole approximation,

]u~r ,t !

]t
2¹2u~r ,t !52a(

i51

N~ t !

Qid~r2r i !, ~2!

wherea5vd and the coefficientsQi describe the strength o
the source or sink of the current for diffusion. We assu
spherical droplets in local equilibrium, so that the concent
tion at the interface is determined by the Gibbs-Thomps
boundary conditionu(Ri)51/Ri . The late-time, quasistatic
solution of Eq.~2! is given by the sum of the source term
~i.e., the ‘‘charges’’Qi multiplied by the appropriate Green’
function! plus the supersaturationx(t), which is slaved to
the inverse mean radius:R̄(t).Rc51/x(t) @7#. We can
write an approximate solution to Eq.~2! by introducing a
coefficientQ0(t), which tracks the evolution ofx(t). @At
R21 © 1997 The American Physical Society
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late times,Q0(t)5x(t)]. In d53, this solution is evaluated
on the surface of dropleti , giving

1

Ri
5Q0~ t !2

Qi

Ri
2(

jÞ i

Qj

ur i2r j u
, ~3!

wherer j is the center of mass of dropletj . The radial growth
law comes from a local continuity equation in a volume e
closing only one droplet:

Ri
d21~dRi /dt!5Qi . ~4!

Since the conservation of mass requires t
x(t)1v( i51

N(t)Ri
d5f, wheref is the constant volume frac

tion of the minority phase, the variation of supersaturation

]x~ t !

]t
1a(

i51

N~ t !

Qi1
]x~ t !

]t U
nuc

50. ~5!

The third term is the decrease ofx(t) due to nucleation of
droplets. The second term accounts for the variation
x(t) due to growth or dissolution of existing droplets. Th
diffusive variation ofx(t) is treated in a mean-field approx
mation which gives( iQi5N@ R̄(t)x(t)21# in d53. Equa-
tions~3! and~5! comprise a set ofN11 linear coupled equa
tions for the coefficientsQi and Q0. Together with the
growth equation~4! and the nucleation rate equation~1!,
they constitute a formal solution to the nucleation a
growth problem, which should well describe the solid-st
precipitation of a binary alloy. The numerical solution
similar sets of self-consistent equations has been descr
previously @7,12#. For the particular case of homogeneo
nucleation, the time evolution starts in an initial supersa
rated state,x(0)5f. The equations are integrated nume
cally using an Euler discretization scheme with a varia
time incrementdt. At a given instantt, the nucleation rate
Jd@x(t)#, the critical radiusRc(t), and the growth law~4!,
are used to compute the minimum time required to nucle
or eliminate one droplet. This in turn determin
]x/]tunuc . Radii Ri and supersaturationx(t) are updated
following the path of minimumdt. This updating ofRi and
x(t) modifies the minimumdt, which must be computed
self-consistently. Further details are given elsewhere@13#.

The time evolution is determined by three parameters:
nucleation parameterx0 @14#, the widthdRc of the distribu-
tion function of the nucleation rate@15#, and the volume
fraction f. The first two parameters determine the init
droplet distribution function and the subsequent crosso
behavior, while the effects off persist to late times. The
time evolution is divided into three stages: a nucleation
diffusive growth and a coarsening stage. Nucleation of dr
lets produces the initial depletion of the supersaturati
While nucleation is proceeding, the first nuclei start to gro
seizing material from the background supersaturation.
diffusive growth stage is marked by the high increase
decrease in slope ofR̄(t) or x(t), and by a nearly constan
droplet densityn(t). When the supersaturation is sufficient
reduced, its role is confined to mediating the exchange
-
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material between the individual droplets. Growth is a glob
interactive phenomenon, and time evolution proceeds
Ostwald ripening.

Figure 1 shows the droplets and background diffus
field for the time evolution of a sampled52 system. In the
initial nucleation regime, the background is homogeneo
When the number of dropletsN(t) reaches its maximum, the
structure in the background signals the imminent decay
N(t). In the diffusive regime, most droplets are growing~and
they are located in the depleted green regions!. Finally, the
ripening regime shows a clearly correlated structure in
background. Figure 2 shows the dependence of the m
radiusR̄(t), the droplet number densityn(t), and the super-
saturationx(t) on x0 and f for a d53 system. Similar
results are obtained ind52 systems. The top row compare
different values ofx0 @14#, (1/7, 1/6, 1/5, and 1/4.5) with a
volume fractionf50.05, while the bottom row compare
different values off ~0.04, 0.065, and 0.083! at constant
x051/6. As expected, the nucleation parametersx0 and
dRc are irrelevant for the late stages, and the functio
R̄(t), n(t), andx(t) collapse into af-dependent universa
function. The crossover to the scaling form, however, c
take several decades in time. The nucleation rate isJd
}exp@2Ec /(kT)#, where Ec /(kT)5@x0 /x(t)#

d21 is the
droplet activation energy, which causes very different init
and intermediate behavior. We consider two cases.~i! Large
valuesof Ec (>17kT): These occur forx0>1/4.5 in the
upper panel (f50.05), or forf<0.04 in the lower panel

FIG. 1. ~Color! Time evolution for ad52 system of dimension-
less edge length 20 454 withf50.05 andx051/2. Top left: nucle-
ation regime (t59500). Top right: configuration for the maximum
number of droplets (t51.153105). Bottom left: diffusive growth
regime (t54.793105). Bottom right: ripening regime
(t55.73107). Fora<@u(r ,t)2x(t)#/x(t),b, the color scheme is
as follows. Dark green:b520.08; light green: a520.08,
b520.04; yellow: a520.04, b50.04; orange: a50.04,
b50.12; red:a50.12. Large droplets are generally in the gre
region, where there is depletion of the supersaturation, while di
tegrating droplets are in the red regions of high diffusion fields.
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FIG. 2. Left, middle, and right panels show log-log plots for the normalized mean radiusR̄(t)/Rc , the droplet number per unit volum
n(t), and the normalized supersaturationx(t)/f for a d53 system. HereRc5Rc(t50)51/f. Top row:f50.05 andx051/7 ~thick solid
line!, 1/6 ~long-dashed line!, 1/5 ~dotted-dashed line!, and 1/4.5~thin solid line!. The nucleation rate width is chosen asdRc50.05Rc .
Bottom row:x051/6 andf5 0.083~thick solid line!, 0.065~long-dashed line! and 0.04~dotted-dashed line!; dRc5(A6x0)

21. The inset
shows a schematic diagram of the different regimes, nucleation~N!, diffusion ~D!, and ripening~R! as function of the volume fractionf and
the nucleated volumeX512x(t)/f. The narrow regions betweenN and D and betweenD and R indicate a crossover between th
corresponding regimes.
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(x051/6).~ii ! Low valuesof Ec (<11kT): These occur for
x0<1/6 whenf50.05 or forf>0.05 whenx051/6. In this
latter case, the nucleation rate increases and the maximu
n(t) is higher and occurs sooner with decreasingx0 and
increasingf. Instead, in the first case, nucleation is ve
sluggish. For instance, att;105, the value ofx(t) for
x051/4.5 is still very large and the few droplets nucleat
have nearly equal radii. The excess of supersaturatio
eliminated by the positive growth of all droplets, whic
hardly interact. Thus their number stays constant wh
R̄(t) and x(t) abruptly increase and decrease respectiv
During this stage, which lasts about a decade, the dro
distribution function is quite narrow. Fort.106, x(t) has
decreased substantially, and droplets can no longer gro
its expense. Ostwald ripening then takes over as the do
nant mechanism of phase separation. However, becaus
droplet distribution function is still narrow, it takes som
time for the system to develop a proper dispersion of ra
large enough forn(t) to decrease. During this timex(t) and
R̄(t) are nearly constant. WhenEc is small, there is a large
initial depletion ofx(t) due to nucleation. If, in addition
f is small, diffusive growth is minor, favoring a relativ
early onset of Ostwald ripening with its characteristic pow
law behavior. Iff is relatively large, both mechanisms o
diffusive growth and ripening are present until very la
times. The inset shows a schematic diagram of the diffe
regimes, nucleation, diffusive growth and ripening, and th
corresponding crossover regions, as function off and the
nucleated volumeX512x(t)/f.

Some initial and intermediate times for the radius dis
bution functionsf (R,t) for f50.05 andx051/6 are shown
of
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FIG. 3. Forf50.05 andx051/6, top panels showR̄(t), the
droplet number per unit volumen(t), and the critical radius
Rc(t)51/x(t). The vertical bars indicate the time at which th
droplet distribution functions are depicted in the lower panels. L
column: dRc50. Right column:dRc5(A6x0)

21. The solid line
represents the results of a mean-field theory that we develope
include the droplet correlation effects.
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in Fig. 3. The top panels showR̄(t), n(t), and the critical
radiusRc(t)51/x(t). The vertical bars indicate the time a
which the droplet distribution functions are depicted in t
lower panels. The left- and right-hand columns show the r
of the width of the nucleation ratedRc for the early times.
The left-hand column corresponds todRc50, i.e., when all
the droplets are nucleated with the critical radius. This
treme situation depicts clearly the different mechanisms
nucleation, growth and ripening. With the nucleation of cr
cal droplets,f (R,t) develops a high peak centered atRc . As
supersaturation diminishes,Rc increases and the newl
nucleated droplets have larger radii than the older ones
that f (R,t) is asymmetric, as shown inf (R,t5t1). Before
the peak ofn(t) at t2, none of the nucleated droplets h
disappeared, andf (R,t5t2) has a high peak forR.R̄(t)
and a long tail forR,R̄(t). This excessive population o
small droplets causesR̄(t) to decrease towards the kink
t2. Immediately aftert2, these small droplets dissolv
n(t) decreases andR̄(t) increases sharply whilef (R,t) is
almost symmetric with a small tail forR,R̄(t). The disso-
lution of the small droplets allows ax(t) high enough to
nucleate new droplets. Intensive nucleation and dissolu
of small droplets occurs betweent2 and t4 and the new
droplets produce the second kink ofn(t) at t4. The coarsen-
ing of droplets produces a hump inf (R,t) for R.R̄(t),
le

-
f

so

n

which becomes a second peak betweent4 andt5, creating a
bimodal distribution and a second kink inR̄(t). At exactly
this point, Rc(t) crossesR̄(t), ending a subcritical stage
with many droplets smaller than the critical size. Aftert5 the
peak forR,R̄(t) rapidly decreases, while the coarseni
peak increases and moves towards largerR’s. The right-hand
column in Fig. 3 shows the case withdRc5(A6x0)

21. The
mechanisms are similar but ‘‘washed out’’ due to the disp
sion in radii, and the subcritical stage ends sooner. The s
line distribution functions represent our mean-field soluti
to the equations, based on a Thomas-Fermi approxima
@13#.

In summary, we have introduced a self-consistent mo
that describes the entire process of phase separation from
initial nucleation regime to the late stage Ostwald ripen
regime. The model naturally incorporates the correlatio
which originate in the overlapping of the diffusional fields
each precipitate. A good experimental candidate to test
results would be a lattice-matched binary alloy during sol
state precipitation.
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