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Nucleation and growth: Decay of a metastable state
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We present a self-consistent model that describes the entire process of phase separation from the initial
nucleation to the late stage Ostwald ripening regime. The model, formulated in terms of a set of interface
equations, naturally incorporates the correlations which originate in the overlapping of the diffusional fields
corresponding to the different precipitate$1063-651X97)51907-9

PACS numbes): 64.60.My, 64.75+¢g

A metastable state evolves towards its stable equilibriunout ad hocassumptions. Results from a mean-field solution
state via the formation and growth of droplets. At presentpased on a Thomas-Fermi approximation are also shown.
the early-time process of homogeneous nucleation is well We use dimensionless variables. Units of length and time
understood1—4]. The critical energy for the formation of a are expressed in terms of the capillary length
droplet is determined through a competition between a vollc=(d—1)ov,/(kT) and the characteristic time
ume term(which favors creation of the dropletand a sur-  tc=15/[DCeq(*)vm]. These quantities depend on the spa-
face term(which favors its dissolution Droplets of size cial dimensiond, the surface tensionr, the molecular vol-
R>R. (critical radiug grow, while droplets withR<R, Umeuvy, the temperaturd, the Boltzmann constark, the
shrink. Ostwald ripening, the late-stage process of droplegolute concentration in the matrix at a planar interface
growth by evaporation and condensation, is also well underCeq(*) of & phase-separated system, and the diffusion con-
stood. To reduce the interfacial free energy of the Systems.tantD. We also introduce a dimensionless concentration
material diffuses away from small, high-curvature dropletsfield 6(r,1)=[C(r,t) = Cey()[/Ce¢(), whose value far
(which dissolv, and condenses onto large, low-curvaturel0M any droplet is the time-dependent supersaturation
droplets(which grow. The classic theory of this process is Xc(jt)l;_ af;‘il the dlme_nsud)/gless parameter [8]
due to Lifshitz and Slyozoy5], who considered the nonin- Xo _=volc “/(kT) wherev=="5T'(d/2+1). In dimen-
teracting limit with volume fractionp— 0. For nonzerog, sionless f(_)rm, the field-theoretic steady-state nucleation rate
the main result$6,7] are that the universal scaling form of can be written a§2,8,11
the droplet distribution function depends @n and that the

— a d-1
coarsening rat&(¢) in the growth law for the mean radius Ja=Adlx () xo0l“BaeXP —[xo/ X (D]} 1)
R(1), R3(t)xK(¢)t, is a monotonically increasing function ) ,
of . where Ay is a numerical constanta;=2/3, a,=4,

Although these limiting cases are understood, much Ies§,3:[1+X(t)/X°]3'55’ and '82:1'. The cn'qcal radius is
is known about the complete evolution of the system fromdiVen by Re=1/x(t). The nucleation rate gives the number
the early nucleation to the late Ostwald ripening stage. Thi??c droplets nuclea.ted per unit volume per unit time for a
problem was first studied in the seminal work of Langer andd!Ven supersaturation. . .

Schwartz[8], who used a mean-field approach to study the. The time evqlutlon of the system is described by the _mul-
nonlinear dynamical equations of a phase separating systeH?rOplet diffusion equation fgr the concentration field
with both nucleation and growth of dropld@]. Experimen-  ¢(T+1). In the monopole approximation,

tal evidencd 10] points to the importance of the interparticle

diffusional interactions and of the spatial locations of par- ao(r,t) )
ticles on nucleation and growth, and therefore, to the need G very= —azl Qio(r—ry), 2

for a comprehensive theory including such correlation ef-

fects.

In this paper, we present a self-consistent model that com¥herea=vd and the coefficientQ; describe the strength of
bines steady-state homogeneous nucleation theory with tH8€ source or sink of the current for diffusion. We assume
classical Lifshitz-Slyozov mechanism, modified to accountSPherical droplets in local equilibrium, so that the concentra-
for the substantial correlations amongst the droplets. Théon at the interface is determined by the Gibbs-Thompson
model, formulated in terms of a set of interface equations, i®oundary conditiond(R;)=1/R;. The late-time, quasistatic
numerically studied in dimensiors=2 andd=3. Since our  Solution of Eq.(2) is given by the sum of the source terms
method only integrates the interface equations, it permits thé-€-, the “charges™Q; multiplied by the appropriate Green’s
simulation of much larger systems than can be studied usinfynction plus the supersaturatiog(t), which is slaved to
other methods, such as Langevin equation simulations. Oudhe inverse mean radiufR(t)=R.=1/x(t) [7]. We can
formalism naturally incorporates the crossover from thewrite an approximate solution to E@2) by introducing a
early-stage nucleation to the late-stage scaling regime, withcoefficient Qy(t), which tracks the evolution ok(t). [At

N(t)
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late times,Qq(t) = x(t)]. In d=3, this solution is evaluated .
on the surface of droplét giving &

1 Qi Qj F
ﬁi—Qom—ﬁ—Z — 3)
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wherer; is the center of mass of droplptThe radial growth
law comes from a local continuity equation in a volume en-
closing only one droplet:
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Since the conservation of mass requires that1 *
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x(1)+v=NORI= p where ¢ is the constant volume frac- 2
tion of the minority phase, the variation of supersaturation is g« 4

&
a® N o p:'\

TtaX Qo =0, ® j

nuc

-

The third term is the decrease gft) due to nucleation of FIG. 1. (Color) Time evqlution for ad=2 system of dimension-
droplets. The second term accounts for the variation o{‘et_ss edge Iengihgé(())354TWIth_:(r)]:[95 ar:‘_dXo:t_llz. fTOFt’hleft‘ nucle-
x(t) due to growth or dissolution of existing droplets. This ation regime (= )- Top right: configuration for the maximum

. - A - - . .~ number of dropletst=1.15x 10°). Bottom left: diffusive growth
diffusive variation ofy(t) is treated in a mean-field approxi- regime  (=4.79<10°). Bottom right: ripening  regime

mation which gives:;Q;=N[R(t) x(t)—1] in d=3. Equa-  (t=5.7x10). Fora<[ 6(r,t) — x(t)}/x(t)<b, the color scheme is
tions(3) and(5) comprise a set dil+ 1 linear coupled equa- as follows. Dark green:b=-0.08; light green:a=—0.08,
tions for the coefficientsQ; and Qq. Together with the b=-0.04; yellow: a=-0.04, b=0.04; orange: a=0.04,
growth equation(4) and the nucleation rate equatidh), b=0.12; red:a=0.12. Large droplets are generally in the green
they constitute a formal solution to the nucleation andregion, where there is depletion of the supersaturation, while disin-
growth problem, which should well describe the solid-statetegrating droplets are in the red regions of high diffusion fields.
precipitation of a binary alloy. The numerical solution of ] o ]
similar sets of self-consistent equations has been describéBaterial between the individual droplets. Growth is a global,
previously[7,12]. For the particular case of homogeneous'meraCt'VP; ph_enomenon, and time evolution proceeds via
nucleation, the time evolution starts in an initial supersatuOstwald ripening. o
rated statex(0)= ¢. The equations are integrated numeri-  Figure 1 shows the droplets and background diffusion
cally using an Euler discretization scheme with a variablefield for the time evolution of a samplé=2 system. In the
time incrementdt. At a given instant, the nucleation rate initial nucleation regime, the background is homogeneous.
Ja[x(t)], the critical radiusR.(t), and the growth law(4), When the_number of droplem(t_) reaches |Fs maximum, the
are used to compute the minimum time required to nucleat&tructure in the background signals the imminent decay of
or eliminate one droplet. This in turn determines N(t). In the diffusive regime, most droplets are growiagd
dx!3t|aue. Radii R and supersaturatiog(t) are updated they are located in the depleted green regioRinally, the
following the path of minimurdt. This updating ofR; and  fiPening regime shows a clearly correlated structure in the
x(t) modifies the minimumdt, which must be computed backg@nd. Figure 2 shows the dependence of the mean
self-consistently. Further details are given elsewti&fs. radiusR(t), the droplet number density(t), and the super-
The time evolution is determined by three parameters: theaturationy(t) on x, and ¢ for a d=3 system. Similar
nucleation parametey, [14], the widthdR. of the distribu-  results are obtained id=2 systems. The top row compares
tion function of the nucleation ratgl5], and the volume different values ofy, [14], (1/7, 1/6, 1/5, and 1/4.5) with a
fraction ¢. The first two parameters determine the initial volume fraction$=0.05, while the bottom row compares
droplet distribution function and the subsequent crossovedifferent values of¢ (0.04, 0.065, and 0.083t constant
behavior, while the effects of persist to late times. The xo=1/6. As expected, the nucleation parametggs and
time evolution is divided into three stages: a nucleation, alR. are irrelevant for the late stages, and the functions

diffusive growth and a coarsening stage. Nucleation of dropR_(t), n(t), and x(t) collapse into ap-dependent universal
lets produces the initial depletion of the supersaturationfunction. The crossover to the scaling form, however, can
While nucleation is proceeding, the first nuclei start to grow,take several decades in time. The nucleation rate]dis
seizing material from the background supersaturation. Th@cexp[—EC/(kD], where E./(KT)=[xo/x(t)]°"! is the
diffusive growth stage is marked by the high increase oigroplet activation energy, which causes very different initial
decrease in slope d®(t) or x(t), and by a nearly constant and intermediate behavior. We consider two ca6g¢d.arge
droplet densityn(t). When the supersaturation is sufficiently valuesof E. (=17kT): These occur fory,=1/4.5 in the
reduced, its role is confined to mediating the exchange ofipper panel ¢=0.05), or for $<0.04 in the lower panel
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FIG. 2. Left, middle, and right panels show log-log plots for the normalized mean rRgi)&R. , the droplet number per unit volume
n(t), and the normalized supersaturatipft)/ ¢ for ad=3 system. Her&k.=R.(t=0)=1/¢. Top row: ¢=0.05 andy,= 1/7 (thick solid
line), 1/6 (long-dashed ling 1/5 (dotted-dashed ling and 1/4.5(thin solid ling. The nucleation rate width is chosen &R.=0.05R. .
Bottom row: yo=1/6 and¢= 0.083(thick solid line, 0.065(long-dashed lineand 0.04(dotted-dashed linedR.= (\6xo) ~*. The inset
shows a schematic diagram of the different regimes, nucle@tiprdiffusion (D), and ripeningR) as function of the volume fractiog and
the nucleated volum&=1— x(t)/¢. The narrow regions betweed and D and betweerD and R indicate a crossover between the
corresponding regimes.

(xo=1/6) (ii) Low valuesof E. (<11kT): These occur for
Xxo0=1/6 when¢=0.05 or for¢p=0.05 whenyy= 1/6. In this
latter case, the nucleation rate increases and the maximum
n(t) is higher and occurs sooner with decreasjtgand
increasing¢. Instead, in the first case, nucleation is very
sluggish. For instance, dt~10°, the value of y(t) for
xo=1/4.5 is still very large and the few droplets nucleated
have nearly equal radii. The excess of supersaturation i
eliminated by the positive growth of all droplets, which
hardly interact. Thus their number stays constant while

R(t) and y(t) abruptly increase and decrease respectively ,
During this stage, which lasts about a decade, the drople 10 T T
distribution function is quite narrow. Far>1C®, x(t) has 1104
decreased substantially, and droplets can no longer grow . 50 ;
its expense. Ostwald ripening then takes over as the dom u
nant mechanism of phase separation. However, because t wr o
droplet distribution function is still narrow, it takes some ;| "
time for the system to develop a proper dispersion of radii gy

Ia_rge enough fon(t) to decrease. During this timg(t) and 200 |

R(t) are nearly constant. Whd#, is small, there is a large
initial depletion of x(t) due to nucleation. If, in addition,
¢ is small, diffusive growth is minor, favoring a relative 0 <
early onset of Ostwald ripening with its characteristic power- 0 10
law behavior. If ¢ is relatively large, both mechanisms of
diffusive growth and ripening are present until very late £ 3. For¢=0.05 andy,=1/6, top panels showR(t), the
times. The inset shows a schematic diagram of the differerfroplet number per unit voluma(t), and the critical radius
regimes, nucleation, diffusive growth and ripening, and theirr (t)=1/y(t). The vertical bars indicate the time at which the
corresponding crossover regions, as functiongofind the  droplet distribution functions are depicted in the lower panels. Left
nucleated volume&=1— x(t)/ . column: dR,=0. Right column:dR.=(/6x,) "*. The solid line
Some initial and intermediate times for the radius distri-represents the results of a mean-field theory that we developed to
bution functionsf (R,t) for ¢=0.05 andy,=1/6 are shown include the droplet correlation effects.
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in Fig. 3. The top panels shoR(t), n(t), and the critical Which becomes a second peak betwegmndt5, creating a
radiusR.(t) =1/x(t). The vertical bars indicate the time at bimodal distribution and a second kink R(t). At exactly
which the droplet distribution functions are depicted in thethis point, Ry(t) crossesﬁ(t), ending a subcritical stage,
lower panels. The left- and right-hand columns show the rol&yith many droplets smaller than the critical size. AftBrthe

of the width of the nucleation ratdR. for the early times. peak forR<R_(t) rapidly decreases, while the coarsening

The left-hand column corresp_onds d(RC.:.O' i.e.,.when ‘.':1” peak increases and moves towards laRjer The right-hand
the droplets are nucleated with the critical radius. This ex-

ISt . . . olumn in Fig. 3 shows the case withR.= (/6x,) ~*. The
treme §|tuat|0n depicts plearly the. different meqhamsm; .Ofnechanisms are similar but “washed out” due to the disper-
nucleation, growth and ripening. With the nucleation of criti-

; sion in radii, and the subcritical stage ends sooner. The solid
cal droplets,f.(R,t) Qeyglops a h'|gh peak centeredrt As line distribution functions represent our mean-field solution
supersaturation diminishes}; increases and the newly

nucleated droplets have larger radii than the older ones, stﬁ_ t]he equations, based on a Thomas-Fermi approximation

:Eatf(RI,(t) ][S ?syr?rtgetnc, as ?flﬁwn '“IR’tt_élg' Bief?reh In summary, we have introduced a self-consistent model
e peak ofn(t) att2, none of the nucleated droplets has s qescribes the entire process of phase separation from the
disappeared, anfi(R,t=t2) has a high peak foR>R(t)  jnitial nucleation regime to the late stage Ostwald ripening
and a long tail forR<R(t). This excessive population of regime. The model naturally incorporates the correlations
small droplets causeR(t) to decrease towards the kink at Which originate in the overlapping of the diffusional fields of
t2. Immediately aftert2, these small droplets dissolve, €ach precipitate. A good experimental candidate to test our
n(t) decreases anaf(t) increases sharply whilé(R,t) is results would be a lattice-matched binary alloy during solid-

almost symmetric with a small tail fdR<R(t). The disso- state precipitation.

lution of the small droplets allows g(t) high enough to

nucleate new droplets. Intensive nucleation and dissolution Thjs work was supported by the Natural Sciences and
of small droplets occurs betwed2 andt4 and the new Engineering Research Council of Canada, and le Fonds pour
droplets produce the second kinkrft) att4. The coarsen- |3 Formation de Chercheurs et I'AiddaRecherche du Gue

ing of droplets produces a hump i(R,t) for R>R(t), bec.
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